Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591392

RESUMO

This research focuses on the behavior of roller-compacted concrete (RCC) used in pavements, which are prone to deterioration affecting their performance. These deteriorations result from various causes, including traffic load, errors during construction, mix design, and ambient conditions. Among these, ambient conditions could lead to a marked variable impact on material behavior and durability depending on the conditions associated with each region. Accordingly, this study aims to deepen the understanding of the effect, which a broader range of ambient conditions and different mix designs have on the physical and mechanical properties of RCC. Measurements such as the amount of water vapor per kilogram of air were used to apply the findings comprehensively. The RCC analysis encompassed experimentation with different compositions, altering the cement water ratio amount, and adding a superplasticizer. The impact of curing on the materials was evaluated before subjecting them to various humidity and temperature conditions. Laboratory tests were conducted to measure performance, including moisture, shrinkage, compressive strength, and the progression of flexural fracture resistance over curing periods of up to 90 days. The results revealed a logarithmic correlation between shrinkage and ambient humidity, which is the most determining factor in performance. Mix optimization through increased cement and reduced water enhanced the tensile strength of the material. Furthermore, the curing process was confirmed to increase resistance to shrinkage, especially in the long term, establishing it as a crucial element for the structural stability of RCC, which is relatively insensitive to variations in ambient conditions.

2.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591396

RESUMO

Roller-compacted concrete (RCC) for pavements has experienced problems with its physical-mechanical performance over extended periods due to ambient and in situ curing conditions. Accordingly, this study aimed to present multiple regression equations for calculating the physical-mechanical properties of RCC for pavements under different service and mix conditions. For this purpose, the research included two cement and two water contents, one reduced with admixture, and four combinations of temperature and relative humidity. For model calibration and definition of the equations, cubic and beam samples were fabricated to carry out physical-mechanical tests, such as moisture content, shrinkage, and modulus of rupture. Laboratory-obtained data were studied with the Response Surface Methodology (RSM) to determine the best regression equations. The main findings determined that the behavior of a mixture of RCC at a prolonged ambient exposure time is possible because the surface models and the RSM were consistent with the different service and mix conditions. The models showed an accuracy of 98.99% in detecting shrinkage changes from 12 to 16% cement with 5.65% water in dry to wet ambient conditions. Similarly, moisture content and modulus of rupture had a 98.27 to 98.88% fit. Finally, the drying shrinkage, with mixes of 12% cement and water content variations with water-reducing admixture and superplasticizer effects, had an adjustment of 94.87%.

3.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499860

RESUMO

The main goal of this study is to evaluate the field performance of crumb-rubber-modified asphalt mixtures used as a surface layer on high-volume traffic roads. For this purpose, several road sections were constructed under different climate conditions and using control mixtures (manufactured with traditional SBS polymer-modified binders) and crumb-rubber-modified mixtures. After the construction of the different road sections, cores were taken at different periods of their service life (up to 63 months) and they were tested in the laboratory in order to assess the evolution of the density, stiffness and fatigue resistance of the layers. Based on the results obtained from tests, it can be concluded that under real severe traffic and climate conditions, asphalt mixtures manufactured with crumb-rubber-modified bitumen offer ageing and mechanical performance very similar to that offered by asphalt mixtures manufactured with traditional SBS-modified bitumen. Based on these considerations, this application can be an interesting solution to minimize environmental problems caused by end-of-life tires in landfills.

4.
Materials (Basel) ; 15(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591641

RESUMO

This article presents a new methodology of analysis based on a fast-running experimental procedure to characterise the mechanical response of asphalt mortars in terms of stiffness, ductility, and fatigue resistance. This was achieved using the DMA (Dynamic Mechanical Analyser) three-point bending configuration. The study was carried out by considering the employment of different types of fillers such cement and CaCO3 and different types of binders such as conventional asphalt binder (B35/50) or modifided polymer-modified bitumen (PMB 25/55-65). From the results of this study, the filler was found to have a greater influence on the stiffness and ductility of the asphalt material, while bitumen had a higher effect on the fatigue life of the asphalt mortar. Fatigue life was observed to increase with the use of a polymer-modified binder, while a lower degree of permanent deformation and higher bearing capacity achieved by the use of cement instead of calcium carbonate as active fillers.

5.
Materials (Basel) ; 7(8): 5903-5919, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28788168

RESUMO

Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...